Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
medRxiv ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38746318

ABSTRACT

Molecular studies of Alzheimer's disease (AD) implicate potential links between autoimmunity and AD, but the underlying clinical relationships between these conditions remain poorly understood. Electronic health records (EHRs) provide an opportunity to determine the clinical risk relationship between autoimmune disorders and AD and understand whether specific disorders and disorder subtypes affect AD risk at the phenotypic level in human populations. We evaluated relationships between 26 autoimmune disorders and AD across retrospective observational case-control and cohort study designs in the EHR systems at UCSF and Stanford. We quantified overall and sex-specific AD risk effects that these autoimmune disorders confer. We identified significantly increased AD risk in autoimmune disorder patients in both study designs at UCSF and at Stanford. This pattern was driven by specific autoimmunity subtypes including endocrine, gastrointestinal, dermatologic, and musculoskeletal disorders. We also observed increased AD risk from autoimmunity in both women and men, but women with autoimmune disorders continued to have a higher AD prevalence than men, indicating persistent sex-specificity. This study identifies autoimmune disorders as strong risk factors for AD that validate across several study designs and EHR databases. It sets the foundation for exploring how underlying autoimmune mechanisms increase AD risk and contribute to AD pathogenesis.

2.
Cell Genom ; 4(4): 100536, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38604126

ABSTRACT

Gene regulatory divergence between species can result from cis-acting local changes to regulatory element DNA sequences or global trans-acting changes to the regulatory environment. Understanding how these mechanisms drive regulatory evolution has been limited by challenges in identifying trans-acting changes. We present a comprehensive approach to directly identify cis- and trans-divergent regulatory elements between human and rhesus macaque lymphoblastoid cells using assay for transposase-accessible chromatin coupled to self-transcribing active regulatory region (ATAC-STARR) sequencing. In addition to thousands of cis changes, we discover an unexpected number (∼10,000) of trans changes and show that cis and trans elements exhibit distinct patterns of sequence divergence and function. We further identify differentially expressed transcription factors that underlie ∼37% of trans differences and trace how cis changes can produce cascades of trans changes. Overall, we find that most divergent elements (67%) experienced changes in both cis and trans, revealing a substantial role for trans divergence-alone and together with cis changes-in regulatory differences between species.


Subject(s)
Gene Expression Regulation , Regulatory Sequences, Nucleic Acid , Animals , Humans , Macaca mulatta/genetics , Regulatory Sequences, Nucleic Acid/genetics , Gene Expression Regulation/genetics , Transcription Factors/genetics , Chromatin/genetics
3.
Genome Biol Evol ; 15(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38095367

ABSTRACT

When the ancestors of modern Eurasians migrated out of Africa and interbred with Eurasian archaic hominins, namely, Neanderthals and Denisovans, DNA of archaic ancestry integrated into the genomes of anatomically modern humans. This process potentially accelerated adaptation to Eurasian environmental factors, including reduced ultraviolet radiation and increased variation in seasonal dynamics. However, whether these groups differed substantially in circadian biology and whether archaic introgression adaptively contributed to human chronotypes remain unknown. Here, we traced the evolution of chronotype based on genomes from archaic hominins and present-day humans. First, we inferred differences in circadian gene sequences, splicing, and regulation between archaic hominins and modern humans. We identified 28 circadian genes containing variants with potential to alter splicing in archaics (e.g., CLOCK, PER2, RORB, and RORC) and 16 circadian genes likely divergently regulated between present-day humans and archaic hominins, including RORA. These differences suggest the potential for introgression to modify circadian gene expression. Testing this hypothesis, we found that introgressed variants are enriched among expression quantitative trait loci for circadian genes. Supporting the functional relevance of these regulatory effects, we found that many introgressed alleles have associations with chronotype. Strikingly, the strongest introgressed effects on chronotype increase morningness, consistent with adaptations to high latitude in other species. Finally, we identified several circadian loci with evidence of adaptive introgression or latitudinal clines in allele frequency. These findings identify differences in circadian gene regulation between modern humans and archaic hominins and support the contribution of introgression via coordinated effects on variation in human chronotype.


Subject(s)
Hominidae , Neanderthals , Animals , Humans , Ultraviolet Rays , Genome, Human , Hominidae/genetics , Neanderthals/genetics , Gene Frequency
4.
bioRxiv ; 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38076936

ABSTRACT

There is an established yet unexplained link between interferon (IFN) and systemic lupus erythematosus (SLE). The expression of sequences derived from transposable elements (TEs) may contribute to production of type I IFNs and generation of autoantibodies. We profiled cell-sorted RNA-seq data (CD4+ T cells, CD14+ monocytes, CD19+ B cells, and NK cells) from PBMCs of 120 SLE patients and quantified TE expression identifying 27,135 TEs. We tested for differential TE expression across 10 SLE phenotypes including autoantibody production and disease activity and discovered 731 differentially expressed (DE) TEs whose effects were mostly cell-specific and phenotype-specific. DE TEs were enriched for specific families and viral genes encoded in TE sequences. Increased expression of DE TEs was associated with genes involved in antiviral activity such as LY6E, ISG15, TRIM22 and pathways such as interferon signaling. These findings suggest that expression of TEs contributes to activation of SLE-related mechanisms in a cell-specific manner, which can impact disease diagnostics and therapeutics.

5.
medRxiv ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38077057

ABSTRACT

Background: Preterm birth (PTB) is the leading cause of infant mortality and follows multiple biological pathways, many of which are poorly understood. Some PTBs result from medically indicated labor following complications from hypertension and/or diabetes, while many others are spontaneous with unknown causes. Previously, investigation of potential risk factors has been limited by lack of data on maternal medical history and the difficulty of classifying PTBs as indicated or spontaneous. Here, we leverage electronic health record (EHR) data (patient health information including demographics, diagnoses, and medications) and a supplemental curated pregnancy database to overcome these limitations. Novel associations may provide new insight into the pathophysiology of PTB as well as help identify individuals who would be at risk of PTB. Methods: We quantified associations between maternal diagnoses and preterm birth using logistic regression controlling for maternal age and socioeconomic factors within a University of California, San Francisco (UCSF), EHR cohort with 10,643 births ( nterm = 9692, nspontaneous_preterm = 449, nindicated_preterm = 418) and maternal pre-conception diagnosis phenotypes derived from International Classification of Diseases (ICD) 9 and 10 codes. Results: Eighteen conditions significantly and robustly (False Discovery Rate (FDR)<0.05) associated with PTBs compared to term. We discovered known (hypertension, diabetes, and chronic kidney disease) and less established (blood, cardiac, gynecological, and liver conditions) associations. Type 1 diabetes was the most significant overall association (adjusted p = 1.6×10 -14 , adjusted OR = 7 (95% CI 5, 12)), and the odds ratios for the significant phenotypes ranged from 3 to 13. We further carried out analysis stratified by spontaneous vs. indicated PTB. No phenotypes significantly associated with spontaneous PTB; however, the results for indicated PTB largely recapitulated the phenotype associations with all PTBs. Conclusions: Our study underscores the limitations of approaches that combine indicated and spontaneous births together. When combined, significant associations were almost entirely driven by indicated PTBs, although our spontaneous and indicated groups were of a similar size. Investigating the spontaneous population has the potential to reveal new pathways and understanding of the heterogeneity of PTB.

6.
bioRxiv ; 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37961120

ABSTRACT

Phenotypic divergence between closely related species, including bonobos and chimpanzees (genus Pan), is largely driven by variation in gene regulation. The 3D structure of the genome mediates gene expression; however, genome folding differences in Pan are not well understood. Here, we apply machine learning to predict genome-wide 3D genome contact maps from DNA sequence for 56 bonobos and chimpanzees, encompassing all five extant lineages. We use a pairwise approach to estimate 3D divergence between individuals from the resulting contact maps in 4,420 1 Mb genomic windows. While most pairs were similar, ∼17% were predicted to be substantially divergent in genome folding. The most dissimilar maps were largely driven by single individuals with rare variants that produce unique 3D genome folding in a region. We also identified 89 genomic windows where bonobo and chimpanzee contact maps substantially diverged, including several windows harboring genes associated with traits implicated in Pan phenotypic divergence. We used in silico mutagenesis to identify 51 3D-modifying variants in these bonobo-chimpanzee divergent windows, finding that 34 or 66.67% induce genome folding changes via CTCF binding motif disruption. Our results reveal 3D genome variation at the population-level and identify genomic regions where changes in 3D folding may contribute to phenotypic differences in our closest living relatives.

7.
Res Sq ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37790518

ABSTRACT

SLC22A10 is classified as an orphan transporter with unknown substrates and function. Here we describe the discovery of the substrate specificity and functional characteristics of SLC22A10. The human SLC22A10 tagged with green fluorescent protein was found to be absent from the plasma membrane, in contrast to the SLC22A10 orthologs found in great apes. Estradiol-17ß-glucuronide accumulated in cells expressing great ape SLC22A10 orthologs (over 4-fold, p<0.001). In contrast, human SLC22A10 displayed no uptake function. Sequence alignments revealed two amino acid differences including a proline at position 220 of the human SLC22A10 and a leucine at the same position of great ape orthologs. Site-directed mutagenesis yielding the human SLC22A10-P220L produced a protein with excellent plasma membrane localization and associated uptake function. Neanderthal and Denisovan genomes show human-like sequences at proline 220 position, corroborating that SLC22A10 were rendered nonfunctional during hominin evolution after the divergence from the pan lineage (chimpanzees and bonobos). These findings demonstrate that human SLC22A10 is a unitary pseudogene and was inactivated by a missense mutation that is fixed in humans, whereas orthologs in great apes transport sex steroid conjugates.

8.
bioRxiv ; 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37609337

ABSTRACT

SLC22A10 is classified as an orphan transporter with unknown substrates and function. Here we describe the discovery of the substrate specificity and functional characteristics of SLC22A10. The human SLC22A10 tagged with green fluorescent protein was found to be absent from the plasma membrane, in contrast to the SLC22A10 orthologs found in great apes. Estradiol-17ß-glucuronide accumulated in cells expressing great ape SLC22A10 orthologs (over 4-fold, p<0.001). In contrast, human SLC22A10 displayed no uptake function. Sequence alignments revealed two amino acid differences including a proline at position 220 of the human SLC22A10 and a leucine at the same position of great ape orthologs. Site-directed mutagenesis yielding the human SLC22A10-P220L produced a protein with excellent plasma membrane localization and associated uptake function. Neanderthal and Denisovan genomes show human-like sequences at proline 220 position, corroborating that SLC22A10 were rendered nonfunctional during hominin evolution after the divergence from the pan lineage (chimpanzees and bonobos). These findings demonstrate that human SLC22A10 is a unitary pseudogene and was inactivated by a missense mutation that is fixed in humans, whereas orthologs in great apes transport sex steroid conjugates.

9.
Adv Exp Med Biol ; 1415: 157-163, 2023.
Article in English | MEDLINE | ID: mdl-37440029

ABSTRACT

Protein function can be impacted by changes in protein structure stability, but determining which change has impact is complex. Stability can be affected by a large change in the tertiary (3D) structure of the protein or due to free-energy changes caused by single amino acid substitutions. Changes in the DNA sequence can have minor or major impact on protein stability, which can lead to disease. Inherited retinal degenerations are generally caused by single mutations which are mostly located in protein-coding regions, while age-related macular degeneration (AMD) is a complex disorder that can be influenced by some genetic variants impacting proteins involved in the disease, although not all AMD risk variants lead to amino acid changes. Here, we review ways that proteins may be affected, the identification and understanding of these changes, and how to identify causal changes that can be targeted to develop treatments to alleviate retinal degenerative disease.


Subject(s)
Macular Degeneration , Retinal Degeneration , Humans , Retinal Degeneration/genetics , Retina , Macular Degeneration/genetics , Mutation , Proteins/chemistry , Protein Stability
10.
Genome Biol Evol ; 15(7)2023 07 03.
Article in English | MEDLINE | ID: mdl-37410590

ABSTRACT

Multiple distal cis-regulatory elements (CREs) often cooperate to regulate gene expression, and the presence of multiple CREs for a gene has been proposed to provide redundancy and robustness to variation. However, we do not understand how attributes of a gene's distal CRE landscape-the CREs that contribute to its regulation-relate to its expression and function. Here, we integrate three-dimensional chromatin conformation and functional genomics data to quantify the CRE landscape composition genome-wide across ten human tissues and relate their attributes to the function, constraint, and expression patterns of genes. Within each tissue, we find that expressed genes have larger CRE landscapes than nonexpressed genes and that genes with tissue-specific CREs are more likely to have tissue-specific expression. Controlling for the association between expression level and CRE landscape size, we also find that CRE landscapes around genes under strong constraint (e.g., loss-of-function intolerant and housekeeping genes) are not significantly smaller than other expressed genes as previously proposed; however, they do have more evolutionarily conserved sequences than CREs of expressed genes overall. We also show that CRE landscape size does not associate with expression variability across individuals; nonetheless, genes with larger CRE landscapes have a relative depletion for variants that influence expression levels (expression quantitative trait loci). Overall, this work illustrates how differences in gene function, expression, and evolutionary constraint are reflected in features of CRE landscapes. Thus, considering the CRE landscape of a gene is vital for understanding gene expression dynamics across biological contexts and interpreting the effects of noncoding genetic variants.


Subject(s)
Genomics , Regulatory Sequences, Nucleic Acid , Humans , Organ Specificity , Genome , Phenotype
11.
Res Sq ; 2023 May 23.
Article in English | MEDLINE | ID: mdl-37292728

ABSTRACT

Comparing chromatin contact maps is an essential step in quantifying how three-dimensional (3D) genome organization shapes development, evolution, and disease. However, no gold standard exists for comparing contact maps, and even simple methods often disagree. In this study, we propose novel comparison methods and evaluate them alongside existing approaches using genome-wide Hi-C data and 22,500 in silico predicted contact maps. We also quantify the robustness of methods to common sources of biological and technical variation, such as boundary size and noise. We find that simple difference-based methods such as mean squared error are suitable for initial screening, but biologically informed methods are necessary to identify why maps diverge and propose specific functional hypotheses. We provide a reference guide, codebase, and benchmark for rapidly comparing chromatin contact maps at scale to enable biological insights into the 3D organization of the genome.

12.
bioRxiv ; 2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37162834

ABSTRACT

Background: KCNE1 encodes a 129-residue cardiac potassium channel (IKs) subunit. KCNE1 variants are associated with long QT syndrome and atrial fibrillation. However, most variants have insufficient evidence of clinical consequences and thus limited clinical utility. Results: Here, we demonstrate the power of variant effect mapping, which couples saturation mutagenesis with high-throughput sequencing, to ascertain the function of thousands of protein coding KCNE1 variants. We comprehensively assayed KCNE1 variant cell surface expression (2,554/2,709 possible single amino acid variants) and function (2,539 variants). We identified 470 loss-of-surface expression and 588 loss-of-function variants. Out of the 588 loss-of-function variants, only 155 had low cell surface expression. The latter half of the protein is dispensable for protein trafficking but essential for channel function. 22 of the 30 KCNE1 residues (73%) highly intolerant of variation were in predicted close contact with binding partners KCNQ1 or calmodulin. Our data were highly concordant with gold standard electrophysiological data (ρ = -0.65), population and patient cohorts (32/38 concordant variants), and computational metrics (ρ = -0.55). Our data provide moderate-strength evidence for the ACMG/AMP functional criteria for benign and pathogenic variants. Conclusions: Comprehensive variant effect maps of KCNE1 can both provide insight into IKs channel biology and help reclassify variants of uncertain significance.

13.
Nat Ecol Evol ; 7(6): 939-953, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37142741

ABSTRACT

Alternative splicing contributes to adaptation and divergence in many species. However, it has not been possible to directly compare splicing between modern and archaic hominins. Here, we unmask the recent evolution of this previously unobservable regulatory mechanism by applying SpliceAI, a machine-learning algorithm that identifies splice-altering variants (SAVs), to high-coverage genomes from three Neanderthals and a Denisovan. We discover 5,950 putative archaic SAVs, of which 2,186 are archaic-specific and 3,607 also occur in modern humans via introgression (244) or shared ancestry (3,520). Archaic-specific SAVs are enriched in genes that contribute to traits potentially relevant to hominin phenotypic divergence, such as the epidermis, respiration and spinal rigidity. Compared to shared SAVs, archaic-specific SAVs occur in sites under weaker selection and are more common in genes with tissue-specific expression. Further underscoring the importance of negative selection on SAVs, Neanderthal lineages with low effective population sizes are enriched for SAVs compared to Denisovan and shared SAVs. Finally, we find that nearly all introgressed SAVs in humans were shared across the three Neanderthals, suggesting that older SAVs were more tolerated in human genomes. Our results reveal the splicing landscape of archaic hominins and identify potential contributions of splicing to phenotypic differences among hominins.


Subject(s)
Hominidae , Neanderthals , Animals , Humans , Hominidae/genetics , Neanderthals/genetics , Alternative Splicing , Genome, Human , Population Density
14.
bioRxiv ; 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37066196

ABSTRACT

Comparing chromatin contact maps is an essential step in quantifying how three-dimensional (3D) genome organization shapes development, evolution, and disease. However, no gold standard exists for comparing contact maps, and even simple methods often disagree. In this study, we propose novel comparison methods and evaluate them alongside existing approaches using genome-wide Hi-C data and 22,500 in silico predicted contact maps. We also quantify the robustness of methods to common sources of biological and technical variation, such as boundary size and noise. We find that simple difference-based methods such as mean squared error are suitable for initial screening, but biologically informed methods are necessary to identify why maps diverge and propose specific functional hypotheses. We provide a reference guide, codebase, and benchmark for rapidly comparing chromatin contact maps at scale to enable biological insights into the 3D organization of the genome.

15.
JAMIA Open ; 6(1): ooad007, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36875690

ABSTRACT

Enabling discovery across the spectrum of rare and common diseases requires the integration of biological knowledge with clinical data; however, differences in terminologies present a major barrier. For example, the Human Phenotype Ontology (HPO) is the primary vocabulary for describing features of rare diseases, while most clinical encounters use International Classification of Diseases (ICD) billing codes. ICD codes are further organized into clinically meaningful phenotypes via phecodes. Despite their prevalence, no robust phenome-wide disease mapping between HPO and phecodes/ICD exists. Here, we synthesize evidence using diverse sources and methods-including text matching, the National Library of Medicine's Unified Medical Language System (UMLS), Wikipedia, SORTA, and PheMap-to define a mapping between phecodes and HPO terms via 38 950 links. We evaluate the precision and recall for each domain of evidence, both individually and jointly. This flexibility permits users to tailor the HPO-phecode links for diverse applications along the spectrum of monogenic to polygenic diseases.

16.
bioRxiv ; 2023 Sep 17.
Article in English | MEDLINE | ID: mdl-36778254

ABSTRACT

Introduction: When the ancestors of modern Eurasians migrated out of Africa and interbred with Eurasian archaic hominins, namely Neanderthals and Denisovans, DNA of archaic ancestry integrated into the genomes of anatomically modern humans. This process potentially accelerated adaptation to Eurasian environmental factors, including reduced ultra-violet radiation and increased variation in seasonal dynamics. However, whether these groups differed substantially in circadian biology, and whether archaic introgression adaptively contributed to human chronotypes remains unknown. Results: Here we traced the evolution of chronotype based on genomes from archaic hominins and present-day humans. First, we inferred differences in circadian gene sequences, splicing, and regulation between archaic hominins and modern humans. We identified 28 circadian genes containing variants with potential to alter splicing in archaics (e.g., CLOCK, PER2, RORB, RORC), and 16 circadian genes likely divergently regulated between present-day humans and archaic hominins, including RORA. These differences suggest the potential for introgression to modify circadian gene expression. Testing this hypothesis, we found that introgressed variants are enriched among eQTLs for circadian genes. Supporting the functional relevance of these regulatory effects, we found that many introgressed alleles have associations with chronotype. Strikingly, the strongest introgressed effects on chronotype increase morningness, consistent with adaptations to high latitude in other species. Finally, we identified several circadian loci with evidence of adaptive introgression or latitudinal clines in allele frequency. Conclusions: These findings identify differences in circadian gene regulation between modern humans and archaic hominins and support the contribution of introgression via coordinated effects on variation in human chronotype.

17.
bioRxiv ; 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36824965

ABSTRACT

Gene regulatory divergence between species can result from cis-acting local changes to regulatory element DNA sequences or global trans-acting changes to the regulatory environment. Understanding how these mechanisms drive regulatory evolution has been limited by challenges in identifying trans-acting changes. We present a comprehensive approach to directly identify cis- and trans-divergent regulatory elements between human and rhesus macaque lymphoblastoid cells using ATAC-STARR-seq. In addition to thousands of cis changes, we discover an unexpected number (~10,000) of trans changes and show that cis and trans elements exhibit distinct patterns of sequence divergence and function. We further identify differentially expressed transcription factors that underlie >50% of trans differences and trace how cis changes can produce cascades of trans changes. Overall, we find that most divergent elements (67%) experienced changes in both cis and trans, revealing a substantial role for trans divergence-alone and together with cis changes-to regulatory differences between species.

18.
Bioinformatics ; 39(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36655767

ABSTRACT

SUMMARY: GSEL is a computational framework for calculating the enrichment of signatures of diverse evolutionary forces in a set of genomic regions. GSEL can flexibly integrate any sequence-based evolutionary metric and analyze sets of human genomic regions identified by genome-wide assays (e.g. GWAS, eQTL, *-seq). The core of GSEL's approach is the generation of empirical null distributions tailored to the allele frequency and linkage disequilibrium structure of the regions of interest. We illustrate the application of GSEL to variants identified from a GWAS of body mass index, a highly polygenic trait. AVAILABILITY AND IMPLEMENTATION: GSEL is implemented as a fast, flexible and user-friendly python package. It is available with demonstration data at https://github.com/abraham-abin13/gsel_vec. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Body Mass Index , Genome, Human , Genomics , Software , Humans , Gene Frequency , Genome-Wide Association Study
19.
EBioMedicine ; 87: 104388, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36516610

ABSTRACT

BACKGROUND: Brugada syndrome (BrS) is a severe inherited arrhythmia syndrome that can be unmasked by fever. METHODS: A multicentre clinical analysis was performed in 261 patients diagnosed with fever-induced BrS, including 198 (75.9%) and 27 (10.3%) patients who received next-generation genetic sequencing and epicardial arrhythmogenic substrate (AS) mapping, respectively. FINDINGS: In fever-induced BrS patients, pathogenic or likely pathogenic (P/LP) SCN5A variant carriers developed fever-induced BrS at a younger age, and more often in females and those of Caucasian descent. They exhibited significant electrophysical abnormalities, including a larger epicardial AS area, and more prolonged abnormal epicardial electrograms. During a median follow-up of 50.5 months (quartiles 32.5-81.5 months) after the diagnosis, major cardiac events (MCE) occurred in 27 (14.4%) patients. Patients with P/LP SCN5A variants had a higher ratio of MCE compared with the rest. Additionally, history of syncope, QRS duration, and Tpe interval could also predict an increased risk for future MCE according to univariate analysis. Multivariate analysis indicated that only P/LP SCN5A variants were independent significant predictors of MCE. Computational structural modelling showed that most variants are destabilizing, suggesting that Nav1.5 structure destabilization caused by SCN5A missense variants may contribute to fever-induced BrS. INTERPRETATION: In our cohort, P/LP SCN5A variant carriers with fever-induced BrS are more prevalent among patients of Caucasian descent, females, and younger patients. These patients exhibit aggressive electrophysiological abnormalities and worse outcome, which warrants closer monitoring and more urgent management of fever. FUNDING: The current work was supported by the National Natural Science Foundation Project of China (Nos. 82270332 & 81670304), The Fundamental Research Funds for the Central Universities of China - Independent Research Project of Wuhan University (No. 2042022kf1217) from China; the National Institutes of Health of USA [NIH R56 (HL47678), NIH R01 (HL138103), and NIH R01 (HL152201)], the W. W. Smith Charitable Trust and the Wistar and Martha Morris Fund, Sharpe-Strumia Research Foundation, the American Heart Association Postdoctoral Fellowship (20POST35220002) from United States; the Netherlands CardioVascular Research Initiative: the Dutch Heart Foundation, Dutch Federation of University Medical Centers, the Netherlands Organization for Health Research and Development, and the Royal Netherlands Academy of Sciences (PREDICT2) from the Netherlands.


Subject(s)
Brugada Syndrome , Female , United States , Humans , Brugada Syndrome/etiology , Brugada Syndrome/genetics , Arrhythmias, Cardiac/genetics , NAV1.5 Voltage-Gated Sodium Channel/genetics , Mutation, Missense
20.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38187606

ABSTRACT

Understanding variation in chromatin contact patterns across human populations is critical for interpreting non-coding variants and their ultimate effects on gene expression and phenotypes. However, experimental determination of chromatin contacts at a population-scale is prohibitively expensive. To overcome this challenge, we develop and validate a machine learning method to quantify the diversity 3D chromatin contacts at 2 kilobase resolution from genome sequence alone. We then apply this approach to thousands of diverse modern humans and the inferred human-archaic hominin ancestral genome. While patterns of 3D contact divergence genome-wide are qualitatively similar to patterns of sequence divergence, we find that 3D divergence in local 1-megabase genomic windows does not follow sequence divergence. In particular, we identify 392 windows with significantly greater 3D divergence than expected from sequence. Moreover, 26% of genomic windows have rare 3D contact variation observed in a small number of individuals. Using in silico mutagenesis we find that most sequence changes to do not result in changes to 3D chromatin contacts. However in windows with substantial 3D divergence, just one or a few variants can lead to divergent 3D chromatin contacts without the individuals carrying those variants having high sequence divergence. In summary, inferring 3D chromatin contact maps across human populations reveals diverse contact patterns. We anticipate that these genetically diverse maps of 3D chromatin contact will provide a reference for future work on the function and evolution of 3D chromatin contact variation across human populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...